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A Space-Time Stochastic Model of Rainfall
for Satellite Remote-Sensing Studies

TuaoMAs L. BELL

Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

A model of the spatial and temporal distribution of rainfall is described that produces random spatial
rainfall patterns with these characteristics: (1) The model is defined on a grid with each grid point
representing the average rain rate over the surrounding grid box. (2) Rain occurs at any one grid point,
on average, a specified percentage of the time and has a lognormal probability distribution. (3) Spatial
correlation of the rainfall can be arbitrarily prescribed. (4) Time stepping is carried out so that large-scale
features persist longer than small-scale features. Rain is generated in the model from the portion of a
correlated Gaussian random field that exceeds a threshold. The portion of the field above the threshold is
rescaled to have a lognormal probability distribution. Sample output of the model designed to mimic
radar observations of rainfall during the Global Atmospheric Research Program Atlantic Tropical
Experiment (GATE), is shown. The model is intended for use in evaluating sampling strategies for
satellite remote-sensing of rainfall and for development of algorithms for converting radiant intensity
received by an instrument from its field of view into rainfall amount.

1. INTRODUCTION

Satellite observation of rainfall is attractive because it
promises information about rainfall rates on a nearly global
basis, information that is unavailable from conventional earth-
bound monitoring systems. It has, of course, its own set of
problems. Rainfall rates must be indirectly inferred using
remote-sensing methods, with all the errors associated with
such techniques, and the observations are intermittent rather
than continuous.

With these problems in mind, a satellite orbit must be se-
lected that best satisfies the conflicting demands of being far
from the earth, in order to see as much as possible, and of
being close, in order to achieve high spatial resolution and to
minimize the so-called “beam-filling problem.” The beam-
filling problem refers to the difficulty of relating the radiances
received by a remote-sensing instrument from a spatially inho-
mogeneous but unresolved rain field within the field of view
(FOV) of the instrument to the rainfall rate actually occurring
within the FOV. It is discussed in more detail later in this
section. As the instrument is brought closer to the surface and
its FOV shrinks, the spatial variability of the rainfall within
the FOV diminishes, and so does the beam-filling problem. At
the same time, however, the satellite will view any one area of
the globe less frequently and so will give a less-representative
account of what the total rainfall in any one area has been,
say, during a week or a month.

To evaluate the performance of the satellite and to optimize
its parameters, it is helpful to have a model of how observed
rainfall might vary in time and space. Such a model is de-
scribed here, designed with the goal of addressing the two
problems of beam-filling and the accuracy of area/time-
averaged rainfall estimation from intermittent samples.

Let us first define the problem of estimating area/time-
averaged rainfall, given the sampling characteristics of a satel-
lite orbit. Suppose we wish to measure the average rainfall

This paper is not subject to U.S. copyright. Published in 1987 by
the American Geophysical Union.

Paper number 7D0321.

over an area A during a time period T. This may be written

17 1
R = T.[) dtzj;dx r(x, t) 1)

where r(x, t) is the rainfall rate at location x and time ¢, and
where j' 4 denotes integration over the area 4. (We arbitrarily
call t = 0 the beginning of the period T.) Even with a perfect
instrument capable of determining r(x, t) exactly, the satellite
will pass over the area A only intermittently, at times ¢, i = 1,
-++, M, during this period, and will sometimes observe only a
portion A; of the area A4, so obtaining during one pass a
subarea-averaged rainfall,
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An estimate of R (equation (1)) using this instrument might be

M
R=(/M) ¥r 3
i=1
which is a special case of a more general weighted average of
the observations,

M
ﬁw =(1/M) Z Wi 4)

i=1
where the weights w, would be chosen to minimize the error
E* = {(R,— R ®)

The angle brackets denote an average over a hypothetical
ensemble of rainfall events typical of the area A and time
period T for which we are evaluating the satellite per-
formance. The rainfall model could be used to suggest what
the w, in (4) should be. But even without this sophistication,
one would want to know the typical size of the error E for the
estimate (3). This error is the best one could expect of the
satellite, neglecting the additional inaccuracies in remote-
sensing methods of measuring rain rates.
Suppose we know the covariance matrix of the rainfall,

U(x, t; X', t') = <r(x, r(X’, £)) — <r(x, X<r(x, 1)y (6)
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We can then write an explicit expression for the error (5)
which is a function of the covariance U alone, since the error,
when expressions (1) and (3) are substituted into it, is quadrat-
ic in r(x, t), and U contains all information about the second-
order moment statistics of . (We must also assume that the
statistics of the rainfall are reasonably homogeneous in space
and time. A diurnal cycle in the rainfall statistics, for example,
might introduce additional errors in our estimate (3)). Thus for
a rainfall model to estimate well the errors one should expect
in R obtained from a satellite, the model statistics must at the
very least reproduce the covariance U in (6). The model de-
scribed in this paper can, in principal, capture this aspect of
rainfall exactly, assuming of course that one can provide a
plausible form for the covariance structure U in the first place.
This can only come from analyses of rainfall data from differ-
ent climatic regimes. The example given here is designed to
mimic aspects of rainfall data observed in GATE. (GATE is
an acronym for the Global Atmosphere Research Program
Atlantic Tropical Experiment.)

The beam-filling problem requires information of a different
sort. For this problem we need to know how variable rainfall
rate might be within a single FOV of the instrument. This is
needed in order to explore the relationship between the
average rainfall occurring in a FOV,

Reov = Apov ™! f dx r(x, t) M
Arov

and the radiance emanating from the FOV received by the
instrument,

Igoy = Agov ' Jv dx J[r(x, 1] 6]

where .# represents the radiant intensity (at some frequency)
produced by the rainfall at point x. (In reality, # will be
determined not only by the local rainfall rate, but also by such
factors as vertical column structure of the raining clouds and
instrumental noise, and so has a “random” component.) The
problem of relating Rgqy to Iroy when £ is nonlinear in r(x, t)
is referred to as the beam-filling problem. R,y is what we
want to know, but Iy is what we measure. For fixed Rggy,
I'tov can vary depending on the spatial variability in r(x, #). A
model is needed to generate typical distributions of r(x, )
within a FOV to investigate the beam-filling problem and to
develop algorithms to convert Irqy to Rgqy With as little error
as possible.

The model is described in the sections that follow. The clos-
est analogous two-dimensional rainfall model the author is
aware of is that of Mejia and Rodriguez-Iturbe [1974b], which
was further developed by Bras and Rodriguez-Iturbe [1976].
The version they describe generates rainfall with a nearly
normal probability distribution, although it could be modified
using a technique similar to what is used here to generate
rainfall with other probability distributions. The model de-
scribed in this paper also takes advantage of a technique (the
“fast Fourier transform” method) that contributes significantly
to its numerical efficiency. This is important in carrying out
some of the studies described above, since simulations of the
order of a year’s worth of data with a time step of a fraction of
an hour are envisioned. Other stochastic models which should
be mentioned are those explored by Waymire et al. [1984],
which attempt to capture the development of rainbands and
rain cells and are related in form to a model proposed by Le
Cam [1961]; and those of Lovejoy and Mandelbrot [1985],
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Lovejoy and Schertzer [1985], and Schertzer and Lovejoy [this
issue], whose models exhibit “scaling” or “fractal” behavior.
These latter models are discussed further in section 2.

Section 2 describes the constraints the rainfall model was
designed to satisfy. Section 3 gives a simplified account of how
the model is constructed to satisfy those constraints. Section 4
describes some of the characteristics and output of a numeri-
cal model. Rain fields on a 256 x 256 grid, each grid point
representing rain rate in a 4 x 4 km? area, are generated.
Some possible modifications of the model appropriate to
various sampling studies are described in section 5. A detailed,
technical discussion of the model is given in the appendix.

2. CONSTRAINTS ON THE MODEL

The rainfall model is constructed with several constraints in
mind, foremost among them that the space-time covariance
structure of rainfall be as accurately represented as possible,
since, as was argued in section 1, the covariance statistics of
rainfall largely govern the sampling errors inherent in an ob-
servational system. Some of the constraints serve to simplify
the model so that only a few parameters are needed to specify
completely its behavior and can be established using rainfali
data. Some of the constraints can be relaxed, at the cost of
requiring more parameters to be specified.

First let us list the constraints, and then discuss the reasons
why they are emphasized. The constraints are as follows:

1. Rain fields on a finite (bounded) area will be simulated.
Each grid point of the model represents rain falling in a grid
square centered on that point.

2. The statistics of the rainfield are independent of spatial
position and direction in the field (i.., they are spatially ho-
mogeneous and isotropic).

3. It rains, on average, only a fraction f of the time at any
one grid point. When it rains, the rain rate r has probability
density p(r). This probability will be taken to be lognormal
here.

4. The spatial correlation between any two points x and y
in the field will be specified and, because of assumption 2, will
depend only on |x-y|.

5. Area-averaged rainfall will have time-lagged auto-
correlations that depend on the size of the area. Larger areas
will have longer correlation times.

When the model is used to investigate the effects of inter-
mittent sampling of the rainfall within a square area of per-
haps 500 km on a side at some location on the earth, assump-
tion 2 of spatial homogeneity of the statistics is a plausible
first approximation, at least over large oceanic regions where
little conventional rainfall data is available and where satel-
lites may be the only sources of information. The assumption
may be less justified in areas where strong topographic effects
or persistent thermal contrasts exist. The assumption of statis-
tical isotropy for the rain fields must also be viewed as an
approximation. Zawadzki [1973], for instance, gives examples
of anisotropy of spatial correlations for a storm over Mon-
treal, Canada. Neglect of anisotropy will mean that the model
will not capture certain subtle differences in how the statistics
of satellite observations of rainfall may depend on the orienta-
tion of the satellite’s nadir track with respect to the equator or
on the shape of the FOV. An extension of the model to in-
clude anisotropic statistics could easily be developed, but at
the costs of additional complexity and more parameters.

Assumption 3 raises the issue of choosing the probability
distribution that best represents instantaneous rain rates.
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Many different statistical characterizations of rainfail have
been explored, and lognormality is a frequent candidate, but a
large fraction of these characterizations have involved quan-
tities such as the volume of rain falling during a storm (see
Biondini {1976], for example), or the daily rain amount (see
Crow et al. [1979], for example), or temporal or areal extent
(see Houze and Cheng [1977] and Lopez [1977], for example).
Rain gages give time-averaged rain rates over an area of the
order of 10~ ® km?, much smaller than the areas whose statis-
tics must be represented by the model, though spatial coher-
ency of rainfall and time averaging may justify extrapolating
the data to larger areas. Such data have, of course, been exten-
sively analyzed. See Drufuca and Zawadzki [1975], for just one
instance. Near-instantaneous (1-min average) rain rates from
rain gages have been carefully studied by Jones and Sims
[1978].

The model discussed here requires the statistics of instanta-
neous rainfall averaged over areas of the order of 1 km?
typical of the resolution of radar data. The lognormal distri-
bution is sometimes recommended as a convenient repre-
sentation for the probability distribution of radar-derived rain
rate (see Crane [1985, 1986], for instance). It is easy to con-
vince oneself that the probability of large rain rates does not
decrease with rain rate nearly as fast as a Gaussian probability
distribution would predict. The probability of large values of a
variable that is distributed lognormally decreases (asymp-
totically) more slowly than an exponential, yet faster than any
power of the variable; however, over a finite but considerable
range of the variable, its probability distribution can be diffi-
cult to distinguish from an algebraic (or “hyperbolic”) falloff
(r ~?) [see Montroll and Schlesinger, 1982], especially when one
is trying to estimate the distribution from a limited amount of
data. Lovejoy and Mandelbrot [1985] have proposed that high
rain rates may in fact be hyperbolically distributed, as one
manifestation of “scaling” behavior in rain. It is unfortunately
not easy to construct a clean statistical test of which of the
two distributions describes rain better, because enormous
amounts of data are needed to assess the behavior of the tail
of the probability distribution on which the hypotheses focus,
and the data correlations in space and time are difficult to
take into account with most tests. Some careful statistical
work is needed in this area.

Here rain rate has been generated with a lognormal prob-
ability distribution, since the distribution describes rain rates
reasonably well, with two parameters, over the range of values
observed in the GATE radar data sets whose statistics we are
trying to imitate (B. Kedem, L. S. Chiu, and G. R. North,
Estimation of mean rain rate: Application to satellite observa-
tions, submitted to the Journal of Geophysical Research, 1987;
hereinafter referred to as KCN). Furthermore, the distribution
permits us to discuss spatial covariances such as (6) in a con-
ventional way, whereas moments of distributions with a hy-
perbolic tail require considerably more care. The alternative
proposed by Lovejoy and Mandelbrot [1985] is, however, ex-
tremely interesting. Lovejoy and Mandelbrot [1985], Lovejoy
and Schertzer [1985], and Schertzer and Lovejoy [this issue]
have described models which may be capable of reproducing
spatial and temporal rainfall statistics (but with hyperbolic-tail
distributions). Further study is needed to see what the impli-
cations of their models may be for the remote sensing of rain-
fall.

Finally, let us turn briefly to constraints 4 and 5. These
constraints assume that spatial and temporal correlations of
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rainfall over the scales of interest can be obtained from radar
data. An example of this will be explored in detail in section 4.

3. MODEL DESCRIPTION

To generate time-dependent rain fields with the character-
istics described in section 2, extensive use is made of the possi-
bility of generating random fields g(x) that have Gaussian
statistics at each grid point and are spatially correlated, by the
well-known device of representing the field as a Fourier series,

g(x) =Y a, exp (ik"x) 9
k

where superscript T denotes matrix transpose. See the appen-
dix for a more precise description of the summation range
(equations (A2) and (A3), in particular). The random coef-
ficients g, have real and imaginary parts (a,)g, (a,); that are
normally distributed and uncorrelated with each other and
with all the other coefficients and whose variances are chosen
to produce the desired spatial correlation. Details of this tech-
nique are discussed in the appendix. Let us assume, then, that
we are able to generate a random Gaussian field with spatial
correlation

g(x)g(y)) = cillx —yD (10)

We also assume that g at any point has mean 0 and variance
1. The field g(x) might be related physically to the vertical
wind field or to an index of vertical stability of the lower
atmosphere, although these should be viewed more as helpful
analogies than the beginnings of a physical theory.

We convert this field to a rainfield r(x) by finding a transfor-
mation 4,

r=%y) (1)

with the property that the probability distribution of r is the
one given in constraint 3 in the previous section; that is, r
should be 0 a fraction 1 — f of the time and distributed as p(r)
the rest of the time. Figure ! illustrates the way that this is
accomplished. A threshold g, is found such that the Gaussian
field g exceeds the threshold a fraction f of the time. The
portion of the field that exceeds the threshold is then rescaled
so that its probability distribution is p(r). This can be accom-
plished as follows:

The variable g is first converted to a variable u that is
uniformly distributed between 0 and 1, using the transforma-
tion

u = G(g) (12)
g
Glg) = (2m)~ 172 f exp (—1y%) dy (13)
so that the probability density p of u is
plu)y =1 O<u<l1 (14)
To insure that it rains only a fraction f of the time, set

r=0 u<l-—f (15)

Thus the threshold g, is the solution of the equation
Glgo)=1—f (16)

Values of u greater than 1 — f are converted to rainfall, using
the complement of the cumulative distribution function for
plr),

E(r) = IwMS) ds an



9634

{mm/hr)

t

|
0 v 200
x {km) =~

Fig. 1. Transformation of Gaussian field g(x) to rain field r(x).
The field g exceeds the threshold g, a fraction f of the time. It is
transformed to variable u with a uniform probability distribution.
Variable u is converted to lognormally distributed r whenever it ex-
ceeds 1 — f.

by writing

r=¢'[0-wfl u>1-f (18)

where ¥~ ' means the functional inverse of €. The probability
distribution of r (conditional on r > 0) defined this way will
then be p(r). The transformation £ in (11) can thus be written

R(g) =0
Rg) = ¢ {[1 — G}

g=<g
° (19)

g>4o

Constraints 2 and 3 are now satisfied. To satisfy constraint
4, we need to obtain a rain field with a spatial correlation
structure

rexry)>

var (r) (20)

c{lx —y)

Here primes denote deviations from the mean {(r) and var (r)
denotes the variance of r, {(r')?). To do this we need to take
into account the effect the transformation % has on the Gaus-
sian field correlation ¢ (|x — y|) defined in (10). Suppose two
Gaussian variables g and h, both with mean 0 and variance 1,
have correlation c:

¢ = corr (g, h) 21

corr (g, h) = (g — {g>Wh — <{mD)>/[var (g) var (h)]'7? (22)

The corresponding rain rates generated by the transformation
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Z have correlation

¢, = corr [(g), #(h)] (23)

Equation (23) defines a relation between the correlation ¢ of
the Gaussian variables and the corresponding correlation of
these variables converted to rain rates, which we can write
symbolically as

¢, = H(c) (24)

An expansion of H(c) in powers of ¢ can be obtained using
Mehler’s formula (see Slepian [1972], for example), in which
the coefficients in the expansion involve squares of the expec-
tation value of products of #(g) and the Hermite polynomials
H,(g). (I thank M. S. Taqqu for drawing this device to my
attention.)

Analytical expressions for H can be obtained for certain
special cases of the transformation # in (11). In particular,
when the Gaussian variable g is converted to a lognormally
distributed variable using r = exp (u + og), Matalas [1967]
and Mejia and Rodriguez-Iturbe [1974a] obtain

H(c) = [exp (co?) — 1]/[exp (¢%) — 1]

Although the functional form of H may not always be easy to
obtain analytically, it can accurately be estimated numerically
by a procedure whose details are given in the appendix. Given
H, we are able to satisfy constraint 4, by choosing the corre-
lation of the Gaussian field to have the form

cfllx —y) = H™'[c(Ix — yI)]

where ¢,(]x — y|) is assumed given in constraint 4.

Troublesome possibilities exist that the relation (24) might
not be one-to-one, in which case the inverse H~! would be
ambiguous, or that no value of ¢ might generate a desired
value of c, (as occurs in example (25) for ¢, near — 1), in which
case H™! would be undefined. These theoretical possibilities
have not yet been encountered in attempting to model rainfall
data, but the modeler should be aware of them. The first
seems unlikely if #(equation (11)) is monotonic. Large nega-
tive correlations could lead to the second problem, but they
do not seem to occur with real data: a lower bound for nega-
tive correlations of the nonnegative variable r is — {r>2/var (r),
and rain rate variance seems generally to be much larger than
the squared mean rainfall {r)2.

We turn finally to constraint 5. Constraint 5 is satisfied by
giving the coefficients a, in (9) time dependence, with larger
spatial scales (small |k]} evolving more slowly than small scales
(large {k|), but arranged such that the rainfall probability dis-
tribution continues to satisfy constraints 2-4. Let the real and
imaginary parts of the coefficients a,(t) evolve in time, so that
their lagged correlations decrease exponentially with lag 7,

(25)

(26)

corr {[ay(t + D)r.p [aD]r.s} = exp (—Itl/7y) (27)

This is accomplished by letting the coefficients q,(t) satisfy
Markov equations in time. A review of the properties of such
equations may be found in the work by Jenkins and Watts
[1968]. Evolution of a,(t) in time occurs with time steps of size
At,

a(t) = Bea(t — At) + z,(t) (28)

The z,(¢) are random Gaussian variables whose real and imag-
inary components are uncorrelated with each other or with
themselves at different times (white noise), or with z,(¢), k' # k.
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Fig. 2. The spatial correlation of GATE I rainfall (courtesy of A.
McConnell, private communication, 1985). Sampling errors in corre-
lations are estimated to be of the order of +0.1for large separation s.

The real numbers f, represent the lag-At autocorrelation of
a,(t) (see equation 27),

By = exp [—At/v,] 29
If the variance of z, is set at
var [(z)g,] = (1 — B”) var [(@)r.1] (30)

then they generate g, with just the variance needed to assure
that the field g(x) in (9) has the desired spatial correlations
(equation (10)).

The time constants 7, in (29) must still be specified. To
satisfy constraint 5, they must decrease with increasing [k|.
Determining their precise values from the empirically esti-
mated time correlations of rainfall, however, is not so easy. In
principle, one could use the lagged correlations of rainfall at a
grid point to obtain the corresponding lagged correlations
required of the Gaussian field g at a grid point, using (24), and
then choose 7, to generate the right lagged correlations in g. A
less methodical route to choosing the 7, has been taken, which
will be described in section 4.

Because a Markov process has been used (equation (28)) to
model time development, lagged correlations of r(x, t) will
decay approximately exponentially with time (“approxi-
mately” because rainfall at a grid point is determined by a
sum of many Fourier components with different characteristic
time scales and because transformation (11) will distort the
correlations). Other statistical models of the time development
are possible, from higher-order autoregressive processes [see
Jenkins and Watts, 1968] to “fractional Brownian motion”
processes, such as are described by Mandelbrot [1971] and
Chi et al. [1973], as long as the constraint is met that the
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process reproduce the required variance of the coefficients a,
(cf. equation (30)).

Overall advection of the rainfield can be introduced quite
easily in this model by using the Fourier representation of an
advecting field (cf. equation (9))

gx — Ut =3 a, exp (—ikTUs) exp (ik"x) (31)
k

where U is the advection velocity of the field. By changing the

By in (28) to complex numbers,

B, = exp [—(At/7,) — ikTUAr] (32)

generation of new fields at each time step with (28) can include
advection of the field as well. Taylor’s hypothesis, as applied
to rainfields [ Zawadski, 1973], would presumably work accu-
rately in this model for times small compared to the smallest
correlation time 7, of spatial scales with a significant amount
of variability. See Gupta and Waymire, [this issue] for a recent
discussion of Taylor’s hypothesis for other stochastic models.

4. SAMPLE MoDEL OUTPUT

A numerical version of the model was constructed that in-
corporates statistical features of quarter-hourly radar observa-
tions of rainfall during the GATE I period (June 28 to July 16,
1974). These statistical features were obtained by analyzing
data in a rainfall atlas covering a 400-km-diameter area with a
4 x 4 km? grid, centered on 8°30'N latitude and 23°30'W lon-
gitude off the west coast of Africa. The methods used in pro-
ducing this unique atlas are described by Hudlow and Pat-
terson [1979].

The probability distribution for rainfall during this period
has been analyzed by KCN. They find that approximately 8%
of the 4 x 4 km? boxes have rain in them and that the prob-
ability distribution of rain rate is nearly lognormal. Accord-
ingly, the following values have been assigned for the rain rate
probability distribution parameters:

=008 (33a)
p=<nr>=114 (33b)
02 = var(ln r) = 1.21 (33¢)

which are typical of the values obtained by KCN. The param-
eters u and o are the mean and standard deviation of the
normal probability distribution for In r, when r is expressed in
units of millimeters per hour. ‘

10 11‘I]X|

T T 17
Ll

14 (hrs)

Larald

A L L
40 60 80100 200 400

L (km)

05 ! W |

Fig. 3. The correlation times of GATE I rainfall, averaged over
L x L area, from a study by Laughlin [1981].
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(a)

Fig. 4. Model rainfield, 85 x 85 grid point portion from a 256 x 256 grid point simulation. Dots indicate rainfield rate
r < R; = 10.5 mm/hr, pluses indicate R, < r < R, = 22.0 mm/hr, and asterisks indicate r > R,. The divisions R, and R,
are chosen such that half of the total rain (lognormally distributed, with parameters as in (equation (33)) is diie to rain

rates less thah R
equal to 19.9%.

The spatial correlation of rain rate was derived (A. McCon-
nell, private communication, 1985) from the covariance of the
rainfall

Ullx = yl) = <[r(x) — <rx1r(y) — <y D>

where the angle brackets denote an average over all GATE 1
observations and over all pairs of points separated by distance
Ix — yl. The spatial correlation defined in (20) is then esti-
mated from

(34)

cllx —yl) = U(lx — ylyU(0)

A plot of this quantity versus separation is shown in Figure 2,
out to a separation of 72 km. The data is described well by the
formula (A. McConnell, private communication, 1985)

(35)

¢ (5) = 1/(ks + 0.63682)%2 s =4 km (36)

(displayed as a smooth curve in Figure 2), and this empirical
fit has been used to specify the spatial correlation of rain
generated by the model. Note that although the correlation
(36) is written in terms of the continuous variable s, it is, in
fact, only valid for separations on a 4-km grid. Moreover, it
should not be interpreted as the correlation of “point” rainfall;

1» and one quarter is due to rain rates greater than R,. (a) Rain occurs over 6.6% of area. (b) Rainy area is

rather, it represents the correlation of rainfall averaged over
4-km squares.

How accurate are the empirical correlations on which (36) is
based? In particular, how much might the estimate (36) of the
correlation vary from the “true” correlations one would obtain
from a much larger data set? It is not easy to determine the
sampling error in these correlations because the data from
which they are derived are so dependent. A rough order of
magnitude estimate of the error can, however, be obtained
from the following considerations: The covariance of rainfall
separated by a distance s is the average of the products of rain
rate at all pairs of points separated by s, as expressed in (34).
For separations [s| around 72 km, the accuracy of the estimate
is measured by its standard deviation,

oy = N,”"?{var [r(x)] var [r(y)]}*?

where N, is the effective number of independent samples en-
tering into the average, and the fact is used that at these larger
separations the rainfall at the two points are roughly indepen-
dent. But what is N,? Because rain is correlated in space, the
number of spatially independent samples is far fewer than the
number of grid points averaged over. The variance of area-
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Fig. 4.

averaged rainfall in GATE 1 decreases very nearly as A~ '/3
with area A, as has been found by Laughlin [1981], instead of
as A~!, which would be the case if there were a finite corre-
lation length. The effective number of independent samples in
spatial averages is therefore estimated over the data as

[A4/(4 x 4 km?)]1/3

where A/(4 x 4 km?) is the number of pairs of grid points used
in the average (approximately 5200, or about two thirds of the
400-km-diameter GATE area, for averages over points sepa-
rated by s = 72 km with a fixed orientation). The data is also
correlated in time. As discussed later in this section, the corre-
lation time of area-averaged rainfall for the largest area in
GATE is of the order of t.= 7 hours. Using Leith’s [1973]
estimate of the independent sample time, 27, one would con-
clude that there are 18 x 24/2t temporally independent sam-
ples in the 18 days of GATE data used in the average. Multi-
plying the number of independent spatial and temporal sam-
ples together, an estimate

N, ~ (5200)'3 x 31
N, =540

is obtained which is far, far fewer than a naive estimate based
on the product of the number of grid points in the GATE area

(continued)

times the number of snapshots would suggest (~ 107). Corre-
lations in the neighborhood of s = 72 km are thus estimated
to be accurate to within two standard deviations, 20, &
2N, Y2 =0.09. (The small additional contribution to the
sampling error from estimating var(r), which appears in the
denominator of the expression (35) for the correlation, is ig-
nored). This sampling error may at best be regarded as an
order of magnitude estimate of the true error. It might be
slightly smaller because correlations for two orientations of
the vector s were averaged together to obtain the values in
Figure 2. On the other hand, during the GATE ] period there
is a marked tendency for disturbances to concentrate in the
southeastern half of the GATE area [see Hudlow and Pat-
terson, 1979], so that the assumption of spatial homogeneity
of the statistics can only be approximately valid, and the as-
sumption of isotropy, as already discussed, is also only ap-
proximate. Analysis of the 16 days of radar data available
from the GATE II period (July 28 to August 15, 1974), for
which disturbances were weaker but more evenly distributed
over the GATE area, gives spatial correlations consistently
less than those in Figure 2, by slightly less than 0.1 (A. Mc-
Connell, private communication, 1985). It therefore seems rea-
sonable to trust the spatial correlations represented by (36) to
perhaps +0.1.

Another possible concern is that of extrapolating (36) out to
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Fig. 5. Some sample GATE rainfall images, using the same plotting convention as in Figure 4. No data is available in
the corners of the image. (a) Rain occurs over 6.6% of area (not including the corners). (b) Rainy area is equal to 19.9%.

the distances employed in these simulations (~ 500 km). The
fact that the variance of area-averaged rainfall decreases very
nearly as A~ '3 up to areas as large as 280 x 280 km? (found
for GATE I data by Laughlin [1981]), which would be predic-
ted by the power law behavior of (36), reinforces using (36) as
a reasonable extrapolation out to these distances. A faster
decredse at large separation s cannot be ruled out, however,
because of the +0.1 uncertainty in the empirical correlations.
The temporal behavior of the model is dictated by the coef-
ficients B, in (28), which are, in turr, fixed by the correlation
times 7, defined in (29). To determine these correlation times,
results reported by Laughlin [1981] were used to suggest ap-
propriate time scales for the various wave numbers. Laughlin
[1981] obtained lagged correlations for rainfall rate averaged
over areas A ranging from 4 x 4 km? to 280 x 280 km? and
fit them to a form exp (—1t/t,) where t is lag and 7, is the
correlation time. His results have been graphed for t, versus L

(A4 = I?) in Figure 3, and fitted to a form
1 (L) = ¢ I?? 37

with ¢, = 0.24 when 7, is expressed in units of hours and L is
stated in kilometers. If we associate fluctuations of rainfall

averaged over an L x L area with fluctuations of Fourier
components with wavelength 2L, then we can associate time
scales with Fourier components by equating

T = T(L = n/k) = c(n/k)* (3%)

The form of (38) is suggested by scaling arguments for turbu-
lent fluids frequently invoked to explain the Kolmogorov ki-
netic energy spectrum for turbulent fluids (see Orszag [1977]
for a review of these arguments) and by the observed spectrum
of winds and temperatures in the troposphere apparently fol-
lowing the Kolmogorov spectrum up to the scales of interest
in this model. (A review of these results may be found in the
work by Lilly [1983]). The time scale for k = 0 is not defined
by (38) and is set equal to the time scale of the smallest non-
zero wave number.

For simulations of areas of the order of 512 x 512 km?, (38)
would imply a time constdnt of the order of 15 hours, using
the constant c, from the fit to Figure 3. Because the time scales
in the data for the largest scales seem somewhat less than the
formula (37) would give, the largest time scale in the model
has been somewhat arbitrarily reduced to 12 hours, and a
power law form (38) has been assumed for all other scales, so
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that the smallest time scale of the model, corresponding to
spatial scales of the order of 4 km, is 0.5 hours. However, it
should be noted that the time scales discussed here are corre-
lation times for the Gaussian field g(x) from which the rain-
field is generated by (11), rather than for the rainfield itself,
whose correlations tend to be smaller than for the Gaussian
field (see Figure 9 in the appendix). Further investigation of
the amount of temporal correlation in the Gaussian field
needed to reproduce the rainfield temporal statistics is desir-
able.

Some examples of the kinds of rainfall intensity patterns
generated by the model on-a 256 x 256 grid, with each grid
point representing rainfield with a 4 x 4 km? area, are shown
in Figures 4a and 4b. Only a portion of the area is shown,
85 x 85 in size. For comparison, some scenes from GATE are
shown in Figures 54 and 5b chosen to have similar fractional
area covered by rain. The most striking différence in the
model images and the radar images is that the spatial organi-
zation of the radar image is stronger. The model has more
small-scale activity and does not generate elongated structures
like rainbands so frequently. There may also be a tendency for
heavier rain to be associated with larger-scale rain events than
may be the case in the GATE data.

(continued)

The model was tested to see if it produces a rainfall prob-
ability distribution similar to GATE and to see if its spatial
covariance is similar to GATE, and the agreement was excel-
lent, as it must be (if the numerical implementation is correct),
since the model is forced to have those characteristics. The
correlation time for rain in a grid box (i.e., averaged over a
4-km square) was found to be approximately 0.5 hour, for rain
averaged over a 64-km square it was 3 hours, for a 512-km
square it was 8 hours. Although this last correlation time is
less than (37) predicts, it has been (somewhat arbitrarily) de-
cided not to force it to a larger value, since the maximum
correlation time supported by the empirical data graphed in
Figure 3 is 8 hours.

An interesting feature of rainfall patterns is that the “diam-
eters” of precipitating areas tend to be lognormally distributed
[Lopez, 1976; 1977]. Because the model rainfall patterns have
more diffuse boundaries than do radar images, it is not as
straightforward to assign precipitating areas a precise diam-
eter as it is with the radar images. As an alternative method of
analyzing the distribution of rainy areas, a one-dimensional
version of such an analysis has been carried out. Straight lines
have been drawn through the images. Rainy segments of
various lengths occur along such a line. The distribution of
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err tp >4

Fig. 6. Test for lognormality of the distribution of lengths of
rainy segments along an arbitrary line drawn through model rain-
fields. Points show the inverse Gaussian error function err ~ *(p) where
p is the cumulative probability distribution for the lengths, p(L > ). A
total of 2907 segments were counted in the analysis. A straight line
would indicate perfect lognormality. Points should lie within the 95%
confidence limits. The mean of In [ is 0.715 and its standard deviation
is 0.893, where [ is measured in units of grid points.

rainy segment lengths has been obtained by analyzing many
rainfall model images in this way. The distribution of these
lengths is very close to lognormal, as shown in Figure 6 by
plotting the inverse error function of the cumulative distri-
bution of rainy segment lengths [ versus In I The points lie
very close to a straight line and are nearly all within the 95%
confidence limits for a lognormal distribution.

As an example of the use to which this kind of model can be
put, a simplified version of one of the questions the model is
intended to address is considered. Suppose that a satellite ob-
serves an area at equally spaced intervals Ah for a month.
How accurate an estimate for the total rainfall during the
month will the satellite obtain, assuming that the entire area is
observed each time and that the observations themselves are
perfectly accurate (i.e., neglecting instrumental and remote-
sensing errors)? In other words, what is the value of E in (6)?

A one-dimensional version of the model has been used
which produces rainfall patterns exactly like those that occur
along a line in the two-dimensional model. Figure 7 shows
values of E for line-averaged rainfall of length 4, 64, and 512
km, as a function of sampling time interval Ah. These values
are based on averages over 60 months of hourly data gener-
ated by the model. Error bars (95% confidence) indicate the
estimated accuracy of the values of E. For reference, dashed
lines show the ratio of E to the mean rainfall rate of the model
for the parameters chosen in (9), 0.46 mm/hr. The error in-
creases with the sampling interval Ah, of course, and decreases
with the size of the area averaged over.

5. DISCUSSION

The model described here can reproduce the spatial covari-
ance and grid point statistics of a rain field exactly and can
approximate the temporal statistics. For some purposes this is
all that is required of a statistical model. Construction of the
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Fig. 7. Root-mean-square errors in estimates of total monthly
rainfall falling on lines of length 4, 64, or 512 km, as a function of the
time between observations of the rainfall. The dashed lines indicate
the size of the error as a percentage of the climatic mean rainfall for
the simulation, {(r)> = 046 mm/hr. Representative error bars in the
values of E are shown, based on the limited number (60) of sample
months used to estimate E.

model requires knowing the spatial and temporal statistics of
the rain fields being modeled. In this we are fortunate in
having the GATE radar data set. More analyses of radar and
rain gage data will be required to extend the model to other
climatic regimes. A higher spatial resolution model is desirable
for beam-filling studies, which requires extrapolating the sta-
tistics of the GATE data to this resolution, or analyzing the
statistics of higher resolution radar data.

The model as described here is isotropic and does not gen-
erate rainfall patterns as spatially well defined as radar images
of rainbands. An anisotropic covariance structure could be
used that would generate elliptically shaped patterns oriented
along a chosen direction, but this would only partially mimic
the phenomenon.

Other possible modifications of the model might include
modulation of the parameters with time, to represent a diurnal
or seasonal cycle; use of higher-order autoregressive or even
fractional Brownian processes, to produce smoother time evo-
lution of the field; and imposition of spatial inhomogeneities
in the statistics, such as a tendency to rain more in part of the
simulation field. All of this, of course, would be accomplished
at the cost of additional complexity in the model and the need
for more parameters to be specified.

APPENDIX: DETAILS OF MODEL CONSTRUCTION

A more detailed discussion of the model and a description
of some of the numerical methods used follows.

Generating g(x)

Central to the model is the generation of a correlated Gaus-
sian field g(x). The set of grid points for which the field is
specified will be a N x N square array, where N is even; in
fact, N should ideally be a power of 2 (N = 2¥) in order to
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Fig. 8. The constraints (A15) places on the coefficients a, for
N = 6. The four solid points must be real, the points marked with
crosses are complex, and the points marked with circles are related by
(A15) to ones marked by a cross and are thus not independent.

take maximum advantage of fast Fourier transform algo-
rithms generally available on computers as FORTRAN-
callable subroutines. The locations of the grid points x are

thus given by
X = (xy, X;)

O0<x,x;,sN-1 (A1)

where x; and x, are integers.
The Fourier expansion of g(x) is written

N-1 N—-1

g(x) = 2 Z a,u(x)

k1=0 k2=0

u (x) = exp (i2nk"x/N)

(A2)

(A3)
(where, again, T denotes matrix transpose). Equation (A2) can

be inverted to give the coefficients

a = N7} gx)u,*(x) (A4)

N-1 N-1

r X

x1=0 x2=0

Y= (AS)

where asterisks indicate complex conjugation. By using the
expansion (A2) we are implicitly assuming that g(x) is periodic,
because

U(x) = u(x + d) (A6)
for all vectors

d = (n, N, n,N) (A7)
n,, n, arbitrary integers. Consequently,

g(x) = g(x + d)

and opposite edges of the field behave as if they are joined. By
using (10) and (A4), one can show that the covariance of the
coefficients satisfies the equations

(A8)

{a@*>=0 k#l
{a*ay = N72 ) c (IxDu*(x)

(A9)
(A10)
which can be inverted to give the correlation function in terms
of the variances,

eylix) = 2 <a*a du(x) (A11)
k
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Equations (A6) and (A11) require that ¢, reflect the periodicity
of the field in satisfying

c (X)) = ¢ fx,, x,)
(A12)
cy(xl, X3) = ¢ (N — X, x;) = Cy(x1, N — x,)

Thus if the model is to be used to simulate a rain field in
which spatial correlations decrease with increasing distance,
the periodic field generated by this procedure must be divided
into four quadrants, any one of which will contain a field
whose correlations decrease as desired right out to the edges
of the quadrant. If a larger area of the model is used, it will
have the peculiarity that as the (apparent) separation between
two points becomes greater than N/2 in either direction, their
correlation starts increasing again, according to (A12).

The coefficients a, are complex, and at first sight it appears
that there are 2N? numbers being used in (A2) to generate N2
values of the field g(x). However, the g, are constrained by the
requirement that g(x) is real,

9(x) = g*(x) (A13)
and this, in addition to the periodicity of u,(x) in k,
Uy 4 o(X) = upfx) (Al4)
where d is given by (A7), implies that the a, satisfy
ay = aq_y* (A15)

The constraints this relation implies for a, are illustrated in
Figure 8, for N = 6. The four points marked with a solid circle
are constrained by (A15) to be real. They occur at

k = (0, 0), (0, N/2), (N/2, 0), (N/2, N/2) (A16)

Each coefficient marked with an open circle is constrained by
(A15) to be the complex conjugate of one of the coefficients
marked by crosses in Figure 8. The total number of indepen-
dent coefficients is N2, as it should be.

To generate a random field g(x) then, we choose indepen-
dent random Gaussian-distributed numbers and assign them
to each coefficient g, (real and imaginary parts, where neces-
sary) as follows: Define

o’ = hla*a> (A17)

where (g *a,> is given by (A10) and h, = 1/2 except for the
four vectors k in (A16), for which g, is real (marked by solid
dots in Figure 8) and for which h, = 1. The coefficients q, are
then given the values

a, = 6.8,

(A18)

where ¢, is a random complex number (except for k such that
a, is real, in which cases the imaginary part of ¢, is zero); the
¢, have mean 0 and variance 1 (real and imaginary parts) and
are uncorrelated with one another but satisfy (A15). In prac-
tice, this means assigning all of the crossed points random
values and filling in the values of the circled points using
constraint (A15).

The field g(x) generated from (A2) will, when averaged over
many samples, have the desired spatial covariance c (|x — yl),
with the constraint described in (A12) due to periodicity of the
domain. Although it might appear that Gaussian fields with
arbitrarily specified covariance structure c(|x|) may be gener-
ated by (A2), this is not in fact the case, because (A10) requires
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that the Fourier transform of the spatial correlation be non-
negative. Since the form of ¢,(|x|) is derived from actual rainfall
data, it will have a nonnegative Fourier transform (although
careless handling of missing data in a time series can some-
times cause trouble). However, it is not obvious that the corre-
sponding Gaussian field covariance c(x|) = H™ '[c/(Ix)]
(equation (26)) might not have a negative Fourier transform.
Negative Fourier transforms can also be generated when the
periodicity constraints (equations (A12)) are imposed on the
correlation structure. The most natural way to satisfy (A12) is
to use the empirically derived correlations c,(jx|) (transformed
by equation (26)) out to the boundaries of a quadrant of the
simulation field (i.e., for x;, x, < N/2)), and for apparent sepa-
rations x beyond the quadrant to assign the spatial correlation
the values dictated by the relations in (A12). However, this
produces a “kink” in the correlation structure at the quadrant
boundaries, which can generate negative Fourier components
of the resulting c,(|x]). This problem has been met with in
simulating very small rain fields (N < 16), where a few large-
|k} Fourier components proved to be negative but very small.
(It was not met with in the larger simulations.) One solution
to these problems is simply to replace the negative Fourier
components with 6,? =0 or with the absolute value of the
Fourier component. The model will then generate rainfields
with spatial correlations different Trom the empirical values
originally attempted. The size of this difference can be deter-
mined by inverting the modified spectrum using (A11). How-
ever, this difference may be within the statistical uncertainty of
the empirical estimates and so may be quite acceptable. As
already mentioned, these problems were not met with in the
large-area simulations whose results are presented here.

Obtaining & for Lognormally Distributed
Rainfall

The conversion of g to lognormal rain rates in (11) can be
made numerically simpler than what is implied by (19). Since
the function

exp (—t3) dt (A19)

2 -]
erfc (z2) = —
ViR

is available as a FORTRAN-callable function on many com-
puter systems, it is convenient to use

u=1-G(g)

instead of (12) to generate a uniformly distributed variable,
since this becomes

(A20)

u =4 erfc (g/ﬁ) (A21)
in terms of erfc. Values of u in the region
f<us<i (A22)

are converted to 0 rain rate, and the portion 0 < u < f'is used
to generate rain. To generate lognormal rain rates, the device
of writing

r =exp (u + o) (A23)

is used, where y is the desired mean of In(r) and o? is the
desired variance of In(r), and ¢ is Gaussian-distributed, with
mean 0 and variance 1. Values of ¢ are generated from u by
writing

E=G'(1 —uff) O<u<f (A249)
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which can be written as

E=2ef ' (1 —2uff) O<u<f (A25)

where

2 z
erf(z) = —

i,
FORTRAN-callable subroutines for erf ! are available in the
IMSL subroutine library. We thus have a relatively simple
numerical procedure to convert g(x) to a rain field, with rain
occurring on average a fraction f of the time, and with a
lognormal distribution characterized by the parameters u and
ag.

exp (—1t?) dt (A26)

Obtaining c(|x|)

The last ingredient of the model to be discussed is how to
obtain c([x]), since it is c(|x]) (equation (20)) that is specified.
This requires computing (23) (written symbolically as equation
(24)) in as economical a way as possible, and inverting it to
obtain ¢, in terms of c,. This can be done numerically, and a
description of a procedure developed to handle this problem
follows:

Given two correlated Gaussian variables g and h, a multi-
variate probability distribution for them can be written

P h = exp [—}(g? + H — 2egh/(1 — c*)]

1
n J1—c?
(A27)

Variables g and h have means 0 and variances 1 and corre-
lation ¢. They are converted to rain rates using &,

rg=2R9g) r,=Rh

and the average of the product of these rain rates is given by

(A28)

) = J dg J dh P(g, h) r.r,

= f dg I dh P(g, h) r,r,
g0 a0

where (19) has been used in order to include only those values
of g, h > g, corresponding to nonzero rain rate. Since the
transformation #® in (A28) is determined once f, u, and o? are
fixed (see previous section), (A29) can be evaluated numeri-
cally for a range of values of ¢ in (A27). The quantity {r.r,>
can then be converted to the associated ¢, defined in (23),
given the mean and variance of r, using the lognormal results

<r) =fexp (u +{0?) (A30)
<r*> =fexp (2u + 20?) (A31)

For ¢ near 1 the probability distribution P(g, h) in (A27)
becomes highly peaked, and it is convenient for numerical
integration to use as integration variables ¥ and v, with

(A29)

g=2""u+v (A32a)
h=2"1y —v) (A32b)
so that
© u—J2go
gy =12 f du '[ p(W)p, (v)
V290 o
- R[22 u + v)IR[2™VHu — v)] (A33)
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Fig. 9. An example of the relationship of ¢ to c, expressed by (23)
for a particular choice of the rainfall statistics typical of the GATE
rainfall, for which f=0.08, x4 = 1.14, and ¢ = 1.1. Values of {rrw
were obtained following the numerical method outlined in the appen-
dix (see section on obtaining ¢ (Ix}) for values of ¢ = 0.2, 0.4, 0.6, and
0.8, and the curve plotted here was obtained by cubic-spline interpo-
lation.

with
pw) = [2n(1 + ¢)]~ "2 exp [—3u/(1 + ¢)]
pv) = [2n(1 — )17 exp [—4v2/(1 — ¢)]

Equations (A28) and (A32) are used to make the dependence
of r, and r, on u and v explicit in (A33). For ¢ near 1, p,(v) is
much narrower than p(u), and so numerical integration of
variable v should use narrower steps than those for variable u.

An example of the integration results for parameter values
f=0.08, u = 1.14, and ¢ = 1.1, characteristic of GATE radar
rainfall data, is shown in Figure 9. Once the relationship be-
tween ¢ and ¢, is known for a representative set of values of ¢,
it is a simple matter to convert any given value of ¢, to the
corresponding value of ¢ , using standard interpolation meth-
ods. This solves the last problem in creating a numerically
efficient realization of the model sketched in section 3.

(A34)
(A35)
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